

An Investigation into

THE HYDROMETALLURGICAL UPGRADING OF GRAPHITE FLOTATION CONCENTRATE

from the

ROCKSTONE DEPOSIT

prepared for

5042078 ONTARIO INC.

Project 14748-03 – Final Report May 18, 2022

NOTES

DISCLAIMER: This document is issued by the Company under its General Conditions of Service accessible at *http://www.sgs.com/en/Terms-and-Conditions.aspx*. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativeness of any goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted.

ACCREDITATION: SGS Minerals Lakefield is accredited to the requirements of ISO/IEC 17025 for specific tests as listed on our scope of accreditation, including geochemical, mineralogical, and trade mineral tests. To view a list of the accredited methods, please visit the following website and search SGS Lakefield: http://palcan.scc.ca/SpecsSearch/GLSearchForm.do.

SGS Canada Inc. P.O. Box 4300, 185 Concession Street, Lakefield, Ontario, Canada K0L 2H0 Tel: (705) 652-2000 Fax: (705) 652-6365 www.met.sgs.com www.ca.sgs.com

Table of Contents

Introduction	ii
Testwork Summary	1
1. Flotation Concentrate Characterization	
2. Test Procedures	1
2.1. Pressure Alkaline Leach (PAL) Testing	1
2.2. Atmospheric Acid Leach (AL) Testing	2
3. Combined Test Results	2
Conclusions and Recommendations	4
Appendix A – Test Details	5

List of Tables

Table 1: Results of the Head Ash Analysis by ICP-OES	.1
Table 2: Pressurized Alkaline Leach (PAL) Test Results Summary	.2
Table 3: Atmospheric Acid Leach (AL) Test Results Summary	.3
Table 4: Flotation Concentrate and Acid Leach Residue Assay Summary	.3

Introduction

SGS Natural Resources in Lakefield, Ontario was requested to conduct a brief investigation into the potential for hydrometallurgical upgrading of a flotation concentrate generated from the Rockstone graphite deposit by Mr. Ken Kukkee of 5042078 Ontario Inc. The flotation test program (SGS Project 14748-02) successfully upgraded the graphite sample to ~80% carbon content, short of the intended 95% purity. The scope of the current test program included chemical head characterization and two pressurized alkaline leaches with atmospheric acid leaching.

Testing was commenced once flotation concentrate became available in October 2021 and concluded in January 2022. Test results were forwarded to Mr. Kukkee as they became available.

310

Micheal Archer, P.Eng. Senior Metallurgist, Extractive Metallurgy – Hydrometallurgy

J-&

James Brown, MASc, P.Eng Manager – Extractive Metallurgy

Experimental work by: Y. Adams, R. Heilmann, A. Rashleigh Report preparation by: M. Archer Reviewed by: C. Mina, J. Brown

Testwork Summary

1. Flotation Concentrate Characterization

Several small flotation concentrate samples were blended and assayed for total ash content with the resultant ash assayed for 19 impurity elements (values corrected to original sample mass) by Inductively Coupled Plasma – Optical Emission Spectrometry (ICP-OES). The mass fraction of ash remaining after combustion was 20%, indicating a Cg purity of 80%. Analysis of the ash product is summarized in Table 1. Major impurities included 4.78% Si, 2.26% Fe, 1.81% Al, 0.51% Mg, 0.50% K, 0.41% Na, and 0.11% Ca.

	Elemental constituent, g/t											
AI	Ba	Са	Cr	Cu	Fe	Κ	Мg	Mn				
18100	164	1060	470	152	22600	5030	5100	139				
Мо	Na	Ni	Р	Si	Ti	V	Zn	Zr				
50	4080	<204	38	47800	491	36	3740	49.4				

Table 1: Results of the Head Ash Analysis by ICP-OES

2. Test Procedures

Each test consisted of two individual leach steps – the first a pressure alkaline leach and the second an atmospheric acid leach. The intermediate graphite product was washed thoroughly before advancing to the next step.

2.1. Pressure Alkaline Leach (PAL) Testing

In the first pressure alkaline leach, graphite flotation concentrate was mixed with 200 g/L NaOH solution to produce a slurry of 20% (w/w) solids. This mixture was sealed in a Monel autoclave vessel and heated to 250°C with 345 kPa argon overpressure. The slurry was mixed at the target temperature, for one hour and then cooled, depressurized, and filtered. The residue was washed five times with hot deionized water (DI) with each wash equivalent to 1 m³/t flotation concentrate – although the first wash in each test was marginally larger as required to rinse the Monel autoclave.

It was observed in the first test that a 20% (w/w) slurry did not produce any primary filtrate after the pressure leach. The wet reaction mass was thoroughly washed with the combined liquor assayed to complete a mass balance. The second test was conducted under similar conditions, but with a target slurry density of 10% (w/w) solids instead, and with a large first wash (450 mL). The second test was also completed without argon overpressure.

1

After each pressure alkaline leach, filtrate and wash samples were titrated for total alkalinity reported as NaOH and analyzed for a 30-element scan by ICP-OES. Analysis of the intermediate solids was not conducted in an effort to maximize sample for the second stage acid leaching.

2.2. Atmospheric Acid Leach (AL) Testing

In the first atmospheric acid leach, partially purified graphite (PAL residue) was mixed with DI water to produce a slurry of 20% (w/w) solids. This mixture was heated in a glass reaction kettle while adding a target dosage of acid (to achieve a solution free acidity of 20 g/L H_2SO_4). The slurry was mixed at the target temperature, following acid addition, for two hours followed by filtration. The residue was thoroughly washed (3 × 300 mL DI water) with an overall wash ratio of 18 m³/t flotation concentrate. This wash ratio is not optimized but was selected to ensure adequate washing.

It was observed in the first test that a 20% (w/w) slurry was difficult to mix throughout the reaction time, though this test did produce primary filtrate. The second test was conducted under similar conditions, but at a target slurry density of 10% (w/w) solids.

After each atmospheric acid leach, filtrate and wash samples were titrated for free sulphuric acid and analyzed for a 30-element scan by ICP-OES. The final upgraded graphite samples were assayed for total ash content with the resultant ash assayed for 19 impurity elements (values corrected to original sample mass) by ICP-OES.

3. Combined Test Results

The pressure alkaline leach tests consumed 75.6 kg/t NaOH for PAL1 and 469 kg/t for PAL2. This difference can be attributed to the changes in slurry density between the two tests but should be further investigated with additional testing to confirm the caustic requirement. Test details along with select solution assays are summarized in Table 2.

The atmospheric acid leach tests consumed 143.1 kg/t H₂SO₄ for PAL1-AL1 and 160.2 kg/t for PAL2-AL1. Test details along with select solution assays are summarized in Table 3.

Test ID	NaOH	NaOH		Liquor A	Assays		Alkalinity,
	Consumed, kg/t	Add'n, kg/t	Al, mg/L	Fe, mg/L	K, mg/L	Zn, mg/L	g/L NaOH
PAL1 Filt+Wash	75.6	672.3	271	45.6	205	73.1	37.8
PAL2 Filt	468.8	1512.6	410	31.7	481	271	150.2
PAL2 Comb. Wash	N/A	N/A	53.0	6.1	64	33.4	N/A

 Table 2: Pressurized Alkaline Leach (PAL) Test Results Summary

Test ID	H_2SO_4	H_2SO_4						
	Consumed, kg/t	Add'n, kg/t	Al, mg/L	Fe, mg/L	Mg, mg/L	Na, mg/L		
PAL1-AL1 Filt	143.1	509.8	2770	5550	1070	3480		
PAL1-AL1 Wash	N/A	N/A	230	464	92.8	290		
PAL2-AL1 Filt	160.2	337.2	1290	1870	345	1710		
PAL2-AL1 Wash	N/A	N/A	228	335	64.6	291		

Table 3: Atmospheric Acid Leach (AL) Test Results Summary

Through this two-stage process, the graphite flotation concentrate was upgraded from approximately 80% purity (measured by difference via combustion, assuming all combusted material was graphite content) to an average of 95% purity (93.2% for the residue of PAL1-AL1, 96.1% for PAL2-AL1 residue) with an overall mass loss of approximately 20%. The main remaining impurities after PAL2-AL1 included 0.9% Si, 0.6% Fe, 0.2% Al, 0.2% Mg, and 0.1% Na. Final acid leach residue assays are compared to the initial flotation concentrate in Table 4. Full test details are available in Appendix A.

Table 4: Flotation Concentrate and Acid Leach Residue Assay Summary

Sample ID	Flot Con	PAL1-AL1	PAL2-AL1
Sample ID		Res	Res
Cg, %	80.0	93.2	96.1
Al, g/t	18100	5020	2420
Ba, g/t	164	298	219
Ca, g/t	1060	215	245
Cr, g/t	470	101	112
Cu, g/t	152	122	111
Fe, g/t	22600	4190	6010
K, g/t	5030	1880	185
Mg, g/t	5100	1880	2350
Mn, g/t	139	38.8	48.3
Mo, g/t	50	44	49
Na, g/t	4080	736	772
Ni, g/t	<204	252	188
P, g/t	38	95	<20
Si, g/t	47800	18700	8970
Ti, g/t	491	299	222
V, g/t	36	15	<8
Zn, g/t	3740	235	49
Zr, g/t	49.4	290	20.8

Conclusions and Recommendations

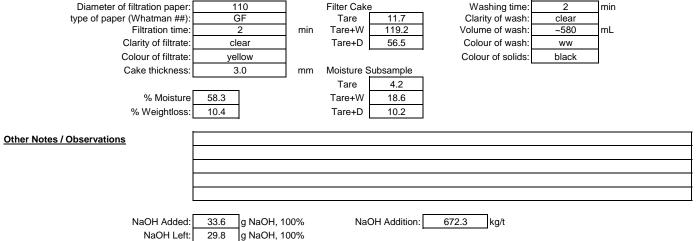
Graphite flotation concentrate produced under SGS Project 14748-02 at 80% graphite purity was subjected to a pair of hydrometallurgical upgrading tests consisting of two stages (pressure alkaline leach and atmospheric acid leach). This pair of tests demonstrated that the flotation concentrate could be further upgraded through hydrometallurgical processing steps to a purity of up to 96.1%. The main impurities remaining in the leach residue include silicon, aluminum, iron, and magnesium. These process steps, performed on a suitable flotation concentrate, bring the graphite purity in line with the originally proposed goal for flotation alone – above 95%.

There is potential to optimize these process steps by adjusting variables in both the pressurized alkaline leach (caustic concentration, test temperature, reaction time) and the atmospheric acid leach (acid addition, acid type, test temperature, reaction time), but it is not expected that these changes will improve graphite purity; rather, these optimization steps would seek to minimize overall costs. Any further removal of impurities to increase graphite purity will likely require additional hydrometallurgical process steps such as acidic fluoride leaching. It is recommended that additional flotation concentrate be made available for these purposes.

Appendix A – Test Details

Client:	14748-03 5042078 Ontario Inc.				Techr	Date ologist(s	e: <u>5-0ct-21</u>): R.Heilmann
	PAL1 To investigate graphite impurity removal thr	ough two-s	tep caustic/a	acid process			
Sample:	Flot Con						
H&S:	NaOH, Graphite. Review MSDS						
Conditions:							
_		target	actual		Vessel: M	onel Auto	clave
	Leach Feed:	50	50 g	as received	Vessel Volume:	500	mL
	% Moisture:	0%	0				
	Dry equiv:	50	50 g				
	Calculated pulp weight:	250	250		Agitator RPM:	600	RPM
	Lixiviant to add:	200		200 g/L NaOH	Target Nitrogen Over pressure:	50	psi
	Lixiviant type:	NaOH	NaOH				
	target Lixiviant Concentration:	200 20.0		L NaOH solids			
	% solids (after reagent): Total Time (h):	20.0	20.0 %	solius			
	Temperature (°C):	250	(te	emperature controlle	ed with heating mantle)		
L		200	(a warnouling manaoy		
	50 mL this is the volume of each hot-	DI water w	vash				
ļ	5 <-> this is the number of washes						
Assays:	# Elements				Streams		
	2 liquor samples - ICP, NaOF	ł			final liquor, combined wash		
	1 solid sample - Ash + ICP				feed solids		

- **3** Seal the vessel and carry out the test record data and observations.
- 4 At the conclusion of the test, shut off heat, cool down the vessel to 90°C. Ensure that that the vessel
 - is fully depressurized before opening. Remove the head assembly and filter the sample as hot as possible.
- 5 Collect filtrate, measure its volume when cold, record SG and perform NaOH titration.
- 6 Wash on filter as per the parameters shown, label and store all washes separately.
- DO NOT combine the Primary Filtrate and wash solutions sample separately.
- 7 Weigh the wet cake.
- 8 Determine % moist by drying a small subsample to constant weight @ 105°C.
- Main portion wet cake-cut: direct to acid leaching see separate sequence.
- 9 Combine equal volumes of each wash solution to create a single composite sample to determine SG, NaOH (by titration).
- 10 Store the filtrate and wash solutions in separate sealed & marked containers until needed for other testwork or disposed.
- 11 Record all data, verify balance, summarize results.
- **12** Further instructions may be provided regarding wash solution handling.


Autoclave Data

Autoclave	υαια									
D	Elapsed	RPM	Temp		Pressure	e (psig)		Of	f-Gas	Remarks
time	Time		°C	Total	Steam	Over	Ar	Flow	Ar	
min	min			meas	calculated		mL/min	%		
07:00	0:00	400	22	0				-	-	heat on
07:53	0.0	600	247	177				-	-	increased temperature SP to 252°C
										injecting Ar at 50psi over the 215 psi steam pressure,
08:00	0	600	250	215		0		-	-	temperature dropped to 240°C, pressure is increasing
08:10	10	600	251	294		79		-	-	temp. cycling down to 244°C, pressure increasing
08:20	20	600	251	325		110		-	-	temp. cycling down to 244°C, pressure settling
08:30	30	600	250	322		107		-	-	temp. settled, reduced pressure, pressure increasing
08:40	40	600	251	321		106		-	-	temperature settled, pressure settled
08:50	50.0	600	250	327		112		-	-	
09:00	60.0	600	250	323		108		-	-	end test, cooling
	210		250	322	0	107	0	0	0	

	SG	Sample Aliquot (wght or vol based)			Aliquot		itrant	Which	Stoich	MW	g/L	g NaOH	
Sample #	g/mL	g	mL calc	mL pipet	mL	N	mL	Base	mol/mol	g/mole	NaOH		
Comb. PLS + Wash	1.046			5	5	0.5	9.45	NaOH	1	40.000	37.8	29.8	
											sum:	29.8 g	NaOH (100%)

		Weight	Volume	emf at	pH at	SG	Calc PLS	Wet	Dry	%H2O	(Colours	Filtration	Pulp
Sample #	pulp, g	PLS, g	PLS, mL	room T	room T	g/mL	Vol, mL	res, g	res, g		PLS	Residue	fst /slw	% solids
Comb. PLS + Wash	252	825.5	789			1.046	198.2	107.5	44.8	58.3	yell	black	fst	17.8

Metallurgical Balance

Element	Units	Feed	Primary Filt	Wash	PAL1 Res	
Quant (mL/g)		50.0	789	0	45	
			Assay (mg	/L, %, g/t)		
Cg	%	80.0			84	
Si	mg/L, g/t	47800			23600	
AI	mg/L, g/t	18100	271		14200	
Ba	mg/L, g/t	164	0.36		250	
Ca	mg/L, g/t	1060	2.7		2070	
Co	mg/L, g/t	<20	0.7		<20	
Cr	mg/L, g/t	470	<0.1		506	
Cu	mg/L, g/t	152	0.2		573	
Fe	mg/L, g/t	22600	45.6		23700	
к	mg/L, g/t	5030	205		1810	
Mg	mg/L, g/t	5100	0.17		5570	
Mn	mg/L, g/t	139	0.72		217	
Mo	mg/L, g/t	50	0.8		44	
Na	mg/L, g/t	4080	24100		12900	
Ni	mg/L, g/t	204	1.0		436	
Р	mg/L, g/t	38	12		267	
Ti	mg/L, g/t	491	1.42		507	
V	mg/L, g/t	36	1.6		15	
Zn	mg/L, g/t	3740	73.1		2400	
Zr	mg/L, g/t	49.4			291	

NaOH consumption:

75.6

kg/t Feed

Extraction	Accountability	Calc		Primary	
to liquor	out/in	Head		Filt	
%	%	%, g/t	Dis	stribution,	%
	94.4	75.5			
0.0	44	21142			
23.6	94	16998		25	
3.5	140	230		2	
4.0	179	1897		2	
55.2	145	<29		38	
0.3	97	455		0	
2.1	340	516		1	
3.2	97	21951		3	
64.3	97	4857		67	
0.1	98	4992		0	
8.2	148	206		6	
25.3	104	52		24	
97.4	100			97	
7.7	199	406		4	
498.4	1128	429		44	
4.6	97	477		5	
70.2	107	39		65	
30.9	88	3304		35	
	528	261			

Project: 14748-03 Client: 5042078 Ontario Inc.

Test: PAL1-AL1

Objective: To investigate graphite impurity removal through two-step caustic/acid process

PAL1 Caustic Residue Sample:

H&S: H₂SO₄. Review MSDS

Conditions:

	1 1		
	target	actual	
Leach Feed wet:	93.1	88.3	g as received
Target % solids (before reagent):	20.0	20.0	% solids
Leach Feed dry:	38.8	36.8	g
Calculated pulp weight:	194.0	184.0	g
Water to add:	100.9	95.7	g DI water
Total Time (h):	2		
Temperature (°C):	30		(temperature controlled with heating mantle
Target Acidity:	20		g/L, H ₂ SO ₄

Assays:	#	Elements		Streams
	2	liquor samples -	ICP	final PLS and wash
	1	solid sample -	Ash	washed residue

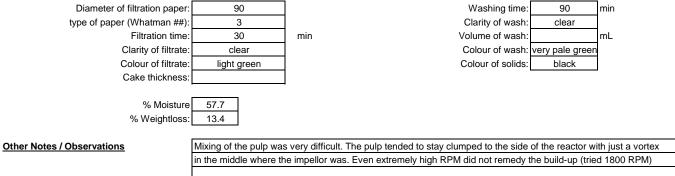
Instructions:

1 Review Acid Leach SOP, perform FLRA if required

- Prepare target weight of feed and DI water into a reactor. Commence heatup.
 Charge acid <u>slowly</u> into leach reactor. Temperature will increase during acid addition.
- 4 Monitor and record pH and T during test. Record any observations, weights of sample taken, reagents/water added to/from test in log sheet.
- 5 At end of test, the pulp + reactor was weighed and filtered.
 6 The contents of the reactor were washed out onto the filter. An acidic filtrate sample was obtained and submitted for analysis.
- 7 The residue was displacement washed using a known amount of DI water. 3 × 300 mL, combined.
- 8 Volume recorded. Primary filtrate and wash separately submitted.
- 9 The washed filtercake was dried and weighed and submitted for analysis.

Test Data:

Time			Rea	actor	Reagents	s / Feed			Comments
(24 h)	(min)	Temp			Graphite	H_2O	H₂SO₄ 96%		
(2411)	elapsed	°C	pН	ORP	g	g	g		
8:35		20.9	8.99	78	88.3	97			
8:45		26.1	1.63	414			20.6		Acid added
8:53		29.4	-0.06	414					FA check - 158.6 g/L
9:45		30.6	1.29	430					
10:45		32.2	0.14	431					End test - filter
Totals/Avg	:	29.6	0.8		88.3	97	20.60	0.0	


Free Acid Data	Fill out SG data.	Enter aliquot data in weight or volume basis.	Enter vol of titrant.	Enter type of acid (HCI, H2SO4 or HNO3)

ſ		SG Sample Aliquot (wght or vol based) Aliquot Titrant		Sample Aliquot (wght or vol based)		trant	Which	Stoich	MW	g/L	g acid			
	Sample #		g/mL	g	mL calc	mL pipet	mL	Ν	mL	Acid	mol/mol	g/mole	acid	
ſ	Final	Filtrate				1	1	0.2	10.32	H ₂ SO ₄	2	98.080	101	7.2
Γ	Final	Wash				5	5	0.2	4.58	H ₂ SO ₄	2	98.080	9	7.0

14.2 g H2SO4 (100%) sum:

		١	Neight	Volume	emf at	pH at	SG	Calc PLS	Wet	Dry	%H2O	C	Colours	Filtratior	Pulp
Sample #		pulp, g	PLS, g	PLS, mL	room T	room T	g/mL	Vol, mL	res, g	res, g		PLS	Residue	fst /slw	% solids
Final	Filtrate	194	79.3	72		0.43	1.109	144.2	79.5	33.6	57.7	lt. green	black		17.4
Final	Wash		784.3	777		1.17	1.009	777.5			,	vp greer	black		

Acid Addition:

Acid Consumption

Acid Added: 19.8 g H₂SO₄, 100% Acid Left: 14.2 g H₂SO₄, 100%

Acid Consumption: 143.1 kg/t Feed

	Metallurgical Balance													
Element	Units	AL1	Pri. Filt	Wash	Final									
		Feed			res									
Quant (mL/g)		37	72	777	34									
			Assay (mg	/L, %, g/t)										
Cg	%	84.3			93.18									
Si	mg/L, g/t	23600			18700									
AI	mg/L, g/t	14200	2770	230	5020									
Ва	mg/L, g/t	250	0.18	0.10	298									
Ca	mg/L, g/t	2070	522	46.0	215									
Co	mg/L, g/t	<20	3.9	0.4	<20									
Cr	mg/L, g/t	506	116	9.9	101									
Cu	mg/L, g/t	573	151	13.8	122									
Fe	mg/L, g/t	23700	5550	464	4190									
К	mg/L, g/t	1810	47	4	1880									
Mg	mg/L, g/t	5570	1070	92.8	1880									
Mn	mg/L, g/t	217	59.4	7.33	38.8									
Мо	mg/L, g/t	44	0.7	<0.6	44									
Na	mg/L, g/t	12900	3480	290	736									
Ni	mg/L, g/t	436	67	6	252									
Р	mg/L, g/t	267	60	<8	95									
Ti	mg/L, g/t	507	68.4	5.79	299									
V	mg/L, g/t	15	0.6	<0.2	15									
Zn	mg/L, g/t	2400	700	65.5	235									
Zr	mg/L, g/t	291			290									

Extraction	Stage Ext'n from	Accountability	Calc	Pri. Filt	Final
to liquor	flot con	out/in	Head		res
			(AL1 Feed)		
%	%	%	%, g/t	Distribu	ution, %
		100.9	85.1		
0.0	0.0	72	17078		
72.2	55	104	14831	36	31
1.0	1	110	275	0	99
96.0	92	105	2183	46	9
80.2	36	172	34	22	53
85.9	86	104	527	43	18
102.1	100	122	697	42	16
86.9	84	103	24423	44	16
9.7	3	105	1893	5	91
72.6	73	103	5758	36	30
124.6	114	141	306	38	12
31.9	24	123	54	3	74
100.0	3	105	13567	50	5
59.0	54	112	487	27	47
107.0		140	372	31	23
50.4	48	104	528	25	52
36.0	11	127	19	6	72
114.4	79	123	2960	46	7
0.0		91	265	0	100

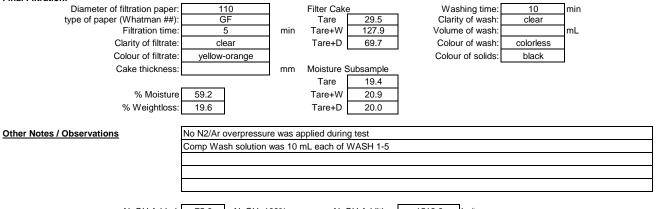
509.8

kg/t Feed

Project: Client:	14748-03 5042078 Ontario Inc.					Techno	Date plogist(s	e: 6-Jan-22 10): A. Rashleigh
Test: Objective:	PAL2 To investigate graphite impurity removal thr	ough two-st	ep caus	tic/acid process				
Sample:	Flot Con							
H&S:	NaOH, Graphite. Review MSDS							
Conditions	::			_				
		target	actual			Vessel: Mo	onel Auto	clave
	Leach Feed:	50		g as received	Ves	ssel Volume:	500	mL
	% Moisture:	0%	0					
	Dry equiv:	50	50	g				
	Calculated pulp weight:	500	500			gitator RPM:	600	RPM
	Lixiviant to add:	450		g 200 g/L NaOH	Target Nitrogen Ov	/er pressure:	50	psi
	Lixiviant type:	NaOH	NaOH					
	target Lixiviant Concentration:	200		g/L NaOH				
	% solids (after reagent):	10.0	10.0	% solids				
	Total Time (h):	250		(tomporatura controlle	d with booting month)			
	Temperature (°C):	200		(temperature controlle	ed with heating mantle)			
	50 mL this is the volume of each hot-	DI water wa	ach					
	5 <-> this is the number of washes	Di Water wa	4311					
Assays:	# Elements				Streams			
-	2 liquor samples - ICP, NaOF	1			final liquor, combined wash			
	0 solid sample -							

Instructions:

- 1 Review MSDS/HAZOP: High press/temp, NaOH, Graphite. Clave-hood, vent, PPE.
- 2 Prepare 500 mL lixiviant (200 g 50% NaOH diluted to 500 mL). Add the feed to the lixiviant under gentle but firm mixing do not allow vortex.
- 3 Seal the vessel and carry out the test record data and observations.
- 4 At the conclusion of the test, shut off heat, cool down the vessel to 90°C. Ensure that that the vessel
- is fully depressurized before opening. Remove the head assembly and filter the sample as hot as possible.
 5 Collect filtrate, measure its volume when cold, record SG and perform NaOH titration.
- 6 Wash on filter as per the parameters shown, label and store all washes separately.
- DO NOT combine the Primary Filtrate and wash solutions sample separately.
- 7 Weigh the wet cake.
- 8 Determine % moist by drying a small subsample to constant weight @ 105°C.
- Main portion wet cake-cut: direct to acid leaching see separate sequence.
- 9 Combine equal volumes of each wash solution to create a single composite sample to determine SG, NaOH (by titration).
- 10 Store the filtrate and wash solutions in separate sealed & marked containers until needed for other testwork or disposed.
- 11 Record all data, verify balance, summarize results.
- 12 Further instructions may be provided regarding wash solution handling.


Autoclave Data

D	Elapsed	RPM	Temp		Pressure	e (psig)		Of	f-Gas	Remarks
time	Time		°C	Total	Steam	Over	Ar	Flow	Ar	
min	min			meas	0	calculated		mL/min	%	
								-	-	heat on
6:20		700	28	0				-	-	Begin heating
7:37		729	250	345				-	-	At temperature
7:52	15	730	249	335				-	-	
8:07	30	733	250	321				-	-	
8:22	45	735	248	313				-	-	
8:37	60	735	252	331				-	-	End test - cool and filter
								-	-	
								-	-	
	150		250	324	0	0	0	0	0	

	SG	Sample Aliq			Sample Aliquot (wght or vol based) Aliquot Titrant Which Stoich MW				g/L	g NaOH	1		
Sample #	g/mL	g	mL calc	mL pipet	mL	Ν	mL	Base	mol/mol	g/mole	NaOH		
Final Filtrate	1.157			1	1	0.5	7.51	NaOH	1	40.000	150.2	27.4	
WASH 1	1.065			1	1	0.5	2.76	NaOH	1	40.000	55.2	23.8	
WASH 2	1.011			5	5	0.5	2.73	NaOH	1	40.000	10.9	0.7	
WASH 3	1.004			5	5	0.5	1.25	NaOH	1	40.000	5.0	0.3	
											sum:	27.4 g	NaOH (10

	١	Veight	Volume	emf at	pH at	SG	Calc PLS	Wet	Dry	%H2O	C	Colours	Filtratior	Pulp
Sample #	pulp, g	PLS, g	PLS, mL	room T	room T	g/mL	Vol, mL	res, g	res, g		PLS	Residue	fst /slw	% solids
Final Filtrate	429	211.2	182.6	-814	12.17	1.1566				yl	lw-oranç	black		
WASH 1		458.7	430.8	-573	12.62	1.0647					lt yllw	black		
WASH 2		64	63.3	-250	12.82	1.0109					vp yllw	black		
WASH 3		58.7	58.5	-248	12.71	1.0038					ww	black		
WASH 4		59.4	59.1	-249	12.66	1.0046					ww	black		
WASH 5		91.3	91.2	-236	12.63	1.0011					ww	black		
Comp WASH		50.7	50			1.018		98.4	40.2	59.2	ww	black		#DIV/0!

 NaOH Added:
 75.6
 g NaOH, 100%

 NaOH Left:
 27.4
 g NaOH, 100%

 NaOH consumption:
 964.1
 kg/t Feed

NaOH Addition: 1512.6 kg/t

%

Metallurgical Balance

Element	Units	Feed	Primary Filt	Wash
Quant (mL/g)		50.0	183	703
			Assay (mg/L, %,	g/t)
Cg	%	80.0		
Si	mg/L, g/t	47800		
AI	mg/L, g/t	18100	410	53.0
Ba	mg/L, g/t	164	1.56	0.030
Ca	mg/L, g/t	1060	1.2	3.1
Co	mg/L, g/t	<20	<0.3	<0.3
Cr	mg/L, g/t	470	0.1	<0.1
Cu	mg/L, g/t	152	7.0	1.6
Fe	mg/L, g/t	22600	31.7	6.1
К	mg/L, g/t	5030	481	64
Mg	mg/L, g/t	5100	0.09	0.19
Mn	mg/L, g/t	139	0.41	0.08
Mo	mg/L, g/t	50	1.1	<0.6
Na	mg/L, g/t	4080	79800	9820
Ni	mg/L, g/t	204	<0.6	<0.6
Р	mg/L, g/t	38	12	<5
Ti	mg/L, g/t	491	2.01	0.32
V	mg/L, g/t	36	3.5	0.4
Zn	mg/L, g/t	3740	271	33.4
Zr	mg/L, g/t	49.4		

Enter of an	A	0.1		
	Accountability	Calc		Primary
to liquor	out/in	Head		Filt
%	%	%, g/t	Dis	stributior
	100.0	0.0		
	100	0		
8.3	100	2242		67
3.5	100	6		93
0.4	100	48		9
5.5	100	5		21
0.1	100	2		21
16.8	100	48		53
0.5	100	202		57
34.9	100	2656		66
0.0	100	3		11
1.1	100	3		57
8.0	100	12		32
33.4	100			68
1.1	100	11		21
115.3	300	114		38
1.5	100	12		62
35.5	100	18		69
26.5	100	1459		68
	100	0		

Project: 14748-03 Client: 5042078 Ontario Inc.

71 Jan-22 Date: Technologist: Y.A

Test: PAL2-AL1

Objective: To investigate graphite impurity removal through two-step caustic/acid process

PAL2 Caustic Residue Sample:

H&S: H₂SO₄. Review MSDS

Conditions:

	target	actual	
Leach Feed wet:	96.9	96.6	g as received
Target % solids (before reagent):	10.0	9.8	% solids
Leach Feed dry:	39.6	39.5	g
Calculated pulp weight:	395.7	402.4	g
Water to add:	298.8	305.8	g DI water
Total Time (h):	2		
Temperature (°C):	30		(temperature controlled with heating mantle
Target Acidity:	20		g/L, H ₂ SO ₄

Assays:	#	Elements		Streams
	2	liquor samples -	ICP	final PLS and wash
	1	solid sample -	Ash	washed residue

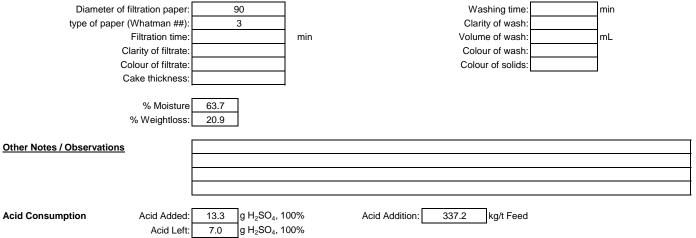
Instructions:

1 Review Acid Leach SOP, perform FLRA if required

- Prepare target weight of feed and DI water into a reactor. Commence heatup.
 Charge acid <u>slowly</u> into leach reactor. Temperature will increase during acid addition.
- 4 Monitor and record pH and T during test. Record any observations, weights of sample taken, reagents/water added to/from test in log sheet.
- 5 At end of test, the pulp + reactor was weighed and filtered.
 6 The contents of the reactor were washed out onto the filter. An acidic filtrate sample was obtained and submitted for analysis.
- 7 The residue was displacement washed using a known amount of DI water. 3 × 300 mL, combined.
- 8 Volume recorded. Primary filtrate and wash separately submitted.
- 9 The washed filtercake was dried and weighed and submitted for analysis.

Test Data:

Time			Rea	actor	Reagent	s / Feed			Comments
					Graphite	H_2O	H_2SO_4		
(24 h)	(min)	Temp					96%		
	elapsed	°C	pН	ORP	g	g	g		
8:35		22.3	10.94	-368	96.6	299			
8:39		26.5	10.96	-365		7	0.4		
8:45		29.8	7.55	-94					
8:52		34.3	2.64	357			4.20		
9:08		34.7	1.83	403			1.60		FA 2.6 g/L
9:25		36.0	1.26	439			4.90		FA 14.02 g/L
9:35		35.5	1.06	470			1.80		FA 18.9 g/L
9:42	0	35.3	0.99	476			1.00		FA 21.5 g/L
Totals/Avg	:	32.4	2.9		96.6	306	13.90	0.0	


Free Acid Data	Fill out SG data.	Enter aliquot data in weight or volume basis.	Enter vol of titrant.	Enter type of acid (HCl, H2SO4 or HNO3)	
----------------	-------------------	---	-----------------------	---	--

			SG	Sample Aliq	uot (wght or vol	based)	Aliquot	Ti	trant	Which	Stoich	MW	g/L	g acid
Sam	ple #		g/mL	mL	mL calc	mL pipet	mL	Ν	mL	Acid	mol/mol	g/mole	acid	
	Final	Filtrate	1.034	1.00	0.97	1	0.967	0.2	2.13	H ₂ SO ₄	2	98.080	22	5.1
	Final	Wash	1.005	5.0	4.97	5	4.9741	0.2	2.10	H ₂ SO ₄	2	98.080	4	1.9

7.0 g H2SO4 (100%) sum:

	Weight		Volume	emf at	pH at	SG	Calc PLS	Wet	Dry	%H2O	(Colours	Filtratior	Pulp	
Sample #		pulp, g	PLS, g	PLS, mL	room T	room T	g/mL	Vol, mL	res, g	res, g		PLS	Residue	fst /slw	% solids
Final	Filtrate	377	245.2	237	483	1.33	1.034	334.0	86.3	31.3	63.7				8.3
Final	Wash		457.2	455	509	1.61	1.005	454.8							

Metallurgical Balance

Element	Units	AL1	Pri. Filt	Wash	Final	
		Feed			res	
Quant (mL/g)		39	237	455	31	
			Assay (mg	/L, %, g/t)		
Cg	%				96.11	1
Si	mg/L, g/t				8970	
AI	mg/L, g/t		1290	228	2420	
Ba	mg/L, g/t		0.098	0.072	219	
Ca	mg/L, g/t		192	35.0	245	
Co	mg/L, g/t		<0.8	<0.8	<20	
Cr	mg/L, g/t		44.1	7.9	112	
Cu	mg/L, g/t		36	6.7	111	
Fe	mg/L, g/t		1870	335	6010	
К	mg/L, g/t		15	<3	185	
Mg	mg/L, g/t		345	64.6	2350	
Mn	mg/L, g/t		17.1	3.41	48.3	
Мо	mg/L, g/t		<0.6	<0.6	49	
Na	mg/L, g/t		1710	291	772	
Ni	mg/L, g/t		26.8	5.2	188	
Р	mg/L, g/t		<5	<5	<20	
Ti	mg/L, g/t		30.9	5.86	222	ĺ
V	mg/L, g/t		<0.2	<0.2	<8	
Zn	mg/L, g/t		65.9	12.7	49	ĺ
Zr	mg/L, g/t				20.8	

Acid Consumption:

160.2

kg/t Feed

Extraction	Stage Ext'n from	Accountability	Calc	Pri. Filt	Final
to liquor	flot con	out/in	Head		res
			(AL1 Feed)		
%	%	%	%, g/t	Distribu	ution, %
		76.6	76.2		
		12	7116		
52.6	48	62	12301	63	16
0.7	1	89	175	0	99
123.7	123	139	1752	66	11
76.8	73	164	30	16	53
61.1	61	76	445	60	20
226.6	188	295	381	57	23
54.2	54	71	19868	57	24
4.2	3	9	271	33	54
44.4	44	74	4682	44	40
83.7	83	106	180	57	21
22.5	21	106	49	7	79
2.5	2	3	14244	72	4
91.9	91	154	370	44	40
			104	29	15
42.5	42	72	429	43	41
16.0	10	45	10	12	64
19.1	14	20	581	68	7